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Abstract. The method of graded contractions, based on the preservation of automorphisms
of finite order, is applied to the affine Lie algebras and their representations, to yield a new
class of infinite-dimensional Lie algebras and representations. After the introduction of the
horizontal and vertical gradings, and the algorithm to find the horizontal toroidal gradings, some
general properties of the graded contractions are discussed and compared witmih&\igner
contractions. The example 95‘2 is discussed in detail.

1. Introduction

In this paper, | describe thgraded contractionsof general affine Lie algebras and their
representations, and illustrate the method with Generally speaking, contractions of
Lie algebras are deformations, or singular transformations, of the constants of structure.
They were introduced in physics bydni and Wigner [1] in order to provide a formal
relationship between the kinematical groups of Einstein's special relativity and Galilean
relativity. In general, contractions are interesting because they relate, in a meaningful way,
different Lie algebras such that various properties of the contracted (or limit) algebra can
be obtained from the initial algebra. This is particularly promising in the study of non-
semisimple Lie algebras (which often can be seen as the outcome of a contraction), because
their representation theory and their general structure are not as elegant and uniform as the
semisimple Lie algebras.

Although the Lie algebras most familiar to physicists amaple such assu(2), su(3)
or Eg, many algebras of physical interest are likely to be non-semisimple. The situation
is similar with the infinite-dimensional Lie algebras. Since the Kac—Moody and Virasoro
algebras represent a rather restricted class of algebras, their contractions lead to a totally
new class of infinite-dimensional Lie algebras, which might well be relevant in physics.
An example of an infinite-dimensional algebra which can be seen as a contraction of a
Kac—Moody algebra is the oscillator (or Heisenberg) algebra, with commutation relations:

[h,a,] =0 lam, an] = m8yvn.0h.

(It is shown below equation (3.6) that this algebra is a rather trivial graded contraction.)
Since the early work of ldni and Wigner, the method has been generalized in many
directions (some of which are given in [2—7]) and applied to various problems in physics
(see, for instance, [8-15]). To my knowledge, the first systematical treatmenbuii-in
Wigner contractions of Kac—Moody algebras appeared in [16].

Recently, non-semisimple affine Lie algebras have been used in string theory, in the
context of Wess—Zumino—Witten (WZW) models [17], where they occur in the expression
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of the current algebras of the models. String backgrounds based on non-semisimple WZW
models have been constructed in [18], and a general class of exact conformal field theories,
with integral Virasoro central charges, have been constructed in [19]. Other constructions
appear in [20]. Although these models have been the main motivation for the present work,
it has interest of its own and is not restricted to these applications.

In this paper, | apply a method of contraction [22,23] based on the preservation
of a grading of a Lie algebra: a decompositon of the algebra into eigenspaces of an
automorphism of finite order. | describe the algorithm to find the grading preserving
contractions, orgraded contractionsof an affine Lie algebra. Starting with an affine
algebra we obtain different (i.e. non-isomorphic) infinite-dimensional Lie algebras. The
interest of this particular method is when we require, for some physical reasons, one or
many automorphisms (e.g. parity or time reversal) to be admitted by the limit algebras.
The systematical study of Lie gradings has been initiated in [21], as a powerful tool in Lie
theory. When it comes to non-semisimple algebras, the graded contractions could be most
useful in studying the gradings. Indeed, in some cases, a contraction is the only way to
build representations of such ‘exotic’ infinite algebras, whose representation theory is yet
to be understood. To summarize, many properties of non-semisimple Lie algebras might
be obtained from a contraction, and if, for some physical reason, an automorphism of finite
order is preserved throughout that contraction, then the formalism of graded contractions is
possibly more appropriate. An advantage of this method is that it applies simultaneously to
all the algebras and representations which admit a common grading.

The method described in [22,23] is implicitly applicable to infinite-dimensional Lie
algebras, but it is studied systematically (for all affine Lie algebras) for the first time here.
The particular casé; has been considered in [25]. | also introduce the concepenical
and horizontal gradings, which do not exist with the finite-dimensional algebras. Having
in mind the purpose of applying these results to high-energy physics, | consider also the
contractions of (integrable irreducible highest weight) representations, and discuss various
properties of the contracted algebras. Although the present formalism can be applied to
superalgebras, | do not consider them here.

I close this section by reviewing briefly the method of graded contractions, introduced
in [22,23] and summarized in [24].

1.1. Definition of graded contractions
A grading of a (finite- or infinite-dimensional) Lie algebgais a vector decomposition:

g= @gu such that ﬁ;u o] € Gu+v (1.1)

nel

whereu andv belong to an Abelian finite grading group | follow the notation of [22—24].
Along with the decomposition (1.1), a grading ofianoduleV is a splitting:

V=, with g, - V, € V4. (1.2)

nel

As mentioned previously, a grading is associated with an automorphism of finite order
(which may follow from physical restrictions). For instance, in [20] one may notice that, in
the construction of a WZW model, if it is possible to split the initial group into the ‘coset’
part and the ‘subgroup’ part by the matrix that rotates the generators, then it follows that
if this matrix is an automorphism, then the contracted algebra admits this automorphism as
well.
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The graded contractionsof g are defined by introducing parameters, (real or
complex, according to the field underlying the algebra), such that the contracted gifebra
has the same vector space as the initial alggbtzut modified commutation relations:

[gw ol = Su,v[gw &l € EpvButv- (1.3)

Similarly, the graded contractions of representations are defined through the introduction of
parameters), ,, which deform the action of on V such that they preserve the grading
(1.2):

O 1pvv = wu,vgu -V, C w,u,v Vu+v- (14)

The contraction parametessand v must satisfy the equations

EpuvEutv,o = Evolotvu = Ep,0€puto,v (15)

and

8;4,u1//u+v,a = I//v,(rwu,v-ﬁ-a = 1//;1,0 wv,;t-‘rﬂ- (16)

The solutions of these two sets of equations, substituted back into (1.3) and (1.4), provide
the contractions of the algebrga and its representations. To each set of parameters
(which defines a contracted algebra), the corresponding solutions of (1.6) fg¢rsheeld
contractions of the representation. (More details and remarks are given in [22-24]. The
contraction of the tensor product of the representations has been introduced in [23].)

In the next section, | present the concepts of vertical and horizontal gradings of affine
Lie algebras, and illustrate them withy. In section 3, | discuss the graded contractions
and some properties. The purpose of this paper is not to provide huge (and not particularly
useful) tables of contracted algebras. Instead, one can rely on the program presented in [24],
given a specific grading or algebra. | rather describe gradings of affine algebras and some
general features of the contractions, emphasizing the main differences with the traditional
methods.

2. Gradings of affine Lie algebras

Consider a simple complex Lie algebga and the corresponding affine untwisted Kac—
Moody algebrag = (g ® C[t,t71]) @ Ck, whereC[t,t~1] is the associative algebra of
the Laurent polynomials in, and k is a central extension. The first term in the sum,
§ = g ® C[t,t71], is called theloop algebraof g. Givena,b € g, the commutation
relations ing read

[a® 1", b®1"] =[a,b] ® """ + mkB(a, b)Smino (2.1)

wherem, n € Z, [a, b] is the commutator irg, andB(a, b) is the Killing form ofg. General
properties of infinite-dimensional Lie algebras can be found in [26-29] and references
therein.

Here, | distinguish two classes of gradingsorizontal and vertical. The first is a
grading of the finite algebrgthat is preserved through the affinization process. The vertical
gradings arenotinherent ing, but are rather given by the gradings®f, r~]. Obviously,
these two types of gradings can be combined to provide gradings which are neither vertical
nor horizontal. One can think of these two types of gradings as being the building blocks
of the gradings ofj. Vertical gradings have no analogue in the finite-dimensional algebras.
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2.1. Horizontal (toroidal) gradings

As mentioned in the previous paragraph, any grading offitiiee Lie algebrag can be
‘elevated’ to a grading of the affine Lie algekifaand it is then called ‘horizontal grading’.
There exists no uniform prescription to find all the gradings of a general Lie algebra. A
comprehensive list of gradings exists only for the simple Lie algebras of rank two and
some of rank three. However, | sketch here a method which provides an important class
of gradings of semisimple Lie algebras: thwoidal gradings The gradings of dinite

Lie algebrag are associated with automorphisms of finite order (or conjugacy classes
of elements of finite order (EFO)) of the corresponding compact Lie gr&uf30, 31].

(An elementary introduction to the EFO theory, sufficient for our purposes, is given in
[33].) Kac's theory of EFO provides a prescription to identify the conjugacy classes of
EFO, and hence the gradings. Such as described below, the action of an EFO leads to a
toroidal Zy grading (for an EFO of ordeN), and one can use it to grade simultaneously

a Lie algebra and its irreducible representations. (It is called ‘toroidal’ because it is
a coarsening of theoroidal—or Cartan—decomposition.) This method provides, in a
straightforward way, the unique diagonal representative of a conjugacy class of EFO in
any irreducible representation gf All one needs to know is the weight system of the
representation.

To grade an algebra, one must consideratipint representation, for which the weight
system is the root system @f If g has rankr, then the EFO is represented by an array
of non-negative integersy, ..., s,], with 1 as the greatest common divisor. To each root
a—and therefore each basis elemenigefis associated an eigenvalue

exp%ni {a, ) (2.2)

where (o, s) = > _ja;s;, if @ = 377_ja;0; (o; are the simple roots of). Also,
M = so + Z;zlcjsj, the ¢; being the components (callettarkg of the highest root
v = Z;zl cja; of g. The vector of marks is annihilated by the affine Cartan matri.e.
Y i—oCjAj = 0O, for all k). The elementg, belong to the eigenvalue given by (2.2), for
any positive or negative roet, and all the elements of the Cartan subalgebra belong to the
eigenvalue 1. Therder of the EFO isN = M C, whereC is given in table 6 of [31] for
all the simple Lie algebras. The grading group is tiiea: Zy.

This can be generalized to any weight system. Véf) be an irreduciblgg-module
with highest weightA, that can be Cartan-decomposed as

V(A) = @ VA VA ={v e V(A)| hv = Ah)v) (2.3)
reQ(A)

whereh is an element ofy, the Cartan subalgebra gf and Q2(A) is the weight system
of the module. To each weight € Q(A) a grading decomposition (1.1) is obtained by
determining eigenvalues similar to (2.2),

o
Uy —> Uy exp%I (A, 8) (2.4)

where (i, s) = >0, b;s;, if A = 3_; bjej. The value ofM is the same as in (2.2).
Obviously, there are otherren-toroidal—gradings ofg which can serve as horizontal
gradings, but | do not consider them hereafter. In fact, they are often related to toroidal
gradings (for example, a grading gfcan be provided by an EFO of a larger group, which
containsg). A comprehensive classification of all such gradings does not yet exist.



Graded contractions of affine Lie algebras 4023

A generalZ,1 ® --- ® Z, is obtained by ‘mixing’ grading<.,,1, Z,.2, . . . found by
using the EFO. If eacH,,; provides a decomposition gf

g= @ Oy, (2.5)

1 €2,

forj=1,...,k,thenall =Z,, ® - -- ® Z,,x grading is obtained as follows,
g= @gﬂ:(ﬂl---uk) (26)
nel

whereg ... = 8u, N -+ - N gy, An example is given at the end of section 2.3.
Once we have &' grading (1.1) of dinite Lie algebrag (obtained from the EFO, or
otherwise), then its affine Lie algebfaadmits the horizontal grading

i=EPon 2.7)
pel
where
do= (g0 ®C[t,t ") ® Ck fuz0 = 8, ®C[t, t71]. (2.8)

(The identity element of is denoted by 0.) Note that, whethgis contracted or not, each
.0 carries a representation space for the subalggpra

In order to find gradings of an irreducible integrable highest weight representation of
g, it is useful to express the gradings @fin terms of the root vectors of. If « € Ay
is a root ing (with componentsys, ..., «,), then the element, ® " can be denoted by
Eyims. The rootag is given bys = ag + W (W is the highest root off). Therefore the
root vector can be expressed solely in terms of the affine simple regtsyi( ..., «,), or
in terms of§ and the finite simple rootsg(as, ..., «,). To any element; in the Cartan
subalgebra ofj is associated the root vectd ;. In the case of &y grading provided by
(2.2), E44+ms belongs to the subspagg, for anym, if ¢, belongs to the grading subspace
g,.. Obviously, all the vector,,; belong togo, as do the elements of the Cartan subalgebra
of g.

Finally, | repeat that the gradings of a finite algebra are not always manifestly related to
an EFO and that there are other types of gradings (e.g. the generalized Pauli matrices used
in [21]). Such gradings are the result of anter automorphism ofy, whereas the EFO
correspond tanner automorphisms. In any event, once a grading (2.6) of a finite algebra is
known, the equations (2.7)—(2.8) provide the corresponding horizontal grading of the affine
algebra.

2.2. Vertical gradings

Similarly, the verticalZy gradings are given by the action of a root of the unity, @xp/N),
on the associative algeb@{z, 1],

¢t — exp(zlj\ji)t (2.9)

such that the element® belongs to the eigenvalue eX@ri/N)m), and we writet” <
C[t, t™Y,nmodn- Therefore, the grading can be written

N-1
Clt.t 1 =@pClr.t™Y; (2.10)
j=0
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where
C[t,t7Y; = @C ¢/ kel (2.12)
Accordingly, the grading of the Kac—Moody algelgras
i=Ps (2.12)
j€Zy
where
Go=@®Clt.t o ®Ck  § =g®C[t, 17, (2.8)

For example, &3 grading is
Go=Ck+ - +g®t3+g@1°+g@*+---
1= +g®t ’+g@tt+g@t'+ -
fo=+g®t 1+ g@FP+gR+---.

In terms of the affine root vectors discussed below (2.8), every elemgnts belongs
to the subspacg,, modw -

2.3. An exampleA,

A general element of the rank two, eight-dimensional simple Lie algdbréor si(3, C))
can be written in the matrix form:

a b c
(d e f ) (2.13)
g h —(a+e

Upon affinization, this algebra becomes the infinite-dimensional Lie algdbra=
(A; ® C[t,t7Y]) ® Ck, wherek is a central element. However, the usual matrix product
must be modified so as to satisfy the commutation relations (2.1).
The horizontalgradings ofA, are provided by an EF® = [so, s1, s2] Which describes
a conjugacy class of elements of orddr = MC, where M = sg + s1 + s» and
C = 3/(gcd(3; s1+2s7)) (see [33]). The only element of order two is givendy= [0, 1, 1]
and provides, according to (2.2), the grading

(A2)o=bH+ Cei(a1+0{2)
(AZ)l = Ceial + Ce:ta2~

h = Chy + Ch, is the Cartan subalgebra df,. In terms of the affine root vectors, the
corresponding grading subspacesjadre generated by

(A2)0 = {Ems» Exaytap) ims» k)

(2.14)

. (2.14)
(A2)1 = {E:i:a1+ln5a E:l:ot2+m5} m € Z.

Usingé = ap+ W4, = ap+a1+ap, we can write, for instancey, s as Engg+m-+1)as-+moos
etc.

The finite algebrad, admits two elements of order three, [11] and [Q 1, 0], which
correspond to

(A2)o=h
(A2)1 = (Ceal + Ce[xz + (Ce—(aﬁ-az) (215)
(A2)2 = Ce_y, + Ce_q, + Cegy o,
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and

(A2)o = b + Cey,
(AZ)l = (Ce(xl + Ceaﬁ-(xz (216)

(A2)2 = Ce_o, + Ce_(gy4ay)
respectively. Therefore, th&; grading of A, given by [1 1, 1] is
(A2)o = (Ems, k)
(A2)1 = {Ecytmss Earimss E—ararims) (2.18)
(Az)z = {E_ay+mss E—aptms> Evyroptms} mezZ
and the grading [0L, 0] is
(A2)o = {Ens, Eayims, k}
(Az)l = {Eut1+m87 Ea1+az+m8} (2-16)

(A2)2 = {E_aytms» E—orrazims)} m € Z.

These expressions illustrate the fact that, for an horizontal grading, i€ g,, then
Eyims € 8y, for all m € Z.
From section 2.2, theertical Z, grading is given by

(A2)o = (A2 ® 1*") ® Ck = {Eus2ms. k}
(A)y = Ay @ 12" = {Eot@n+1)8}

the Z3 grading by
(A2)o = (A2 ® 1*") @ Ck = {Eqs3ms. k}
(A1 = Ar ® 3" = (Eqy anrns) (2.18)
(A2)2= A2 ® 1¥" 2 = (Eyy amy2)s)

and a generaly grading by
(A2)o = (A2 @ t"™) @ Ck = {Eqsnms. k)
(A2)1 = Ay @ 1" = (Ey i (wms)s)

(Ao = Ar ® t"" 2 = (Eqs(Nms2s) (2.19)

(2.17)

(Ap)y_1= Ay @tV V=1 = {Eat(Wm+N-1)8)-

To illustrate the meaning of expression (2.6), | display below a mixed vertical-horizontal
grading. If we mix the horizontal decomposition.12) with the vertical grading (2.17),
we get the followingZ, ® Z, grading:

(A2)00 = (E2ms» E+(aytan)12ms» k)

(1‘32)01 ={Eom+1s> E+@+an+@nt+1)s} (2.20)
(A2)10 = {Exay12mss Exarioms}

(AD11 = {Eart 2ms1ss Exart@mis) m € Z.

The first Z, index corresponds to the grading.i2), and the second index to the
decomposition (2.17). One can verify that (2.20) satisfies the relation (1.1).
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2.4. Gradings of representations

In this section, | describe and give some examples of the gradings of integrable irreducible
highest weight representations of untwisted affine Lie algebras, given a vertical or horizontal
grading of the algebra.

An irreducible highest weight integrable modulgA) of g is labelled by itshighest

weightA = (n; Ao, ..., A,), wheren, Ay, ..., A, are non-negative integers. As the finite
case (see (2.3)), it can be weight decomposed as
vn) =P vt (2.21)
Aeﬁ*
where the weights = (n; Ao, ..., A,) has multiplicity m® =dimV. h is the Cartan

subalgebra ofj. An invariant of V(A) is thelevel A (k) = Z]’:O ¢jA; (k, central element
of g), where thec; are thecomarksof g, defined by} ;_, Ajxé& = 0, for all j (A: affine
Cartan matrix ofg). The integem in 1 is called thenull depth and is equal to the number
of ag’s that must be subtracted fror to reachi. The null depth determines the vertical
gradings.

In order to grade the modul& (A) compatibly with some given grading g, we
consider the action of root vectofg, on the vectors iV (A) so as to coarsen the Cartan
decomposition (2.21). To achieve this, we first express the roots in the basis of fundamental
weightswo, .. ., w,:

ao=(Lad, ..., ah) =8+ adwo + - - - + abw,
o = (0;0(?,...,051) =otgwo—|—~~+oz£w,
(2.22)
o = (O;af),...,af) =(x9a)o—|—~-~—|—afa)r
where the coefficients are given by the affine Cartan maifix= A, for j,k=0,...,r,
ands = (1,0, ..., 0). In the case ofd,, the Cartan matrix is
2 -1 -1
A= <—1 2 —1) (2.23)
-1 -1 2
so that
ao = (1;2, -1, —1) o= (0; —1,2, —1) ar = (0; -1, -1, 2). (2.24)
We useE,, expressed in the-basis, and the fact that, - V> < VA, in order to

find a compatible grading of (A). For instance, the horizontdl, grading of A, given by
(2.14) reads, in this basis,

(A2)o = {(m;0,0,0), (m; F2, +1, £1), k)

(A1 ={(m; FL,£2, 7D, m; FL, L, +2)}  meZ
In this simple case, we can find by inspection that

Vo={m;2Z+1,7Z,7} Vi={(m;2Z,7,7} (2.26)

together with (2.25) satisfies (1.2).
To illustrate theZs grading, | consider the irrep. = (1,0,0). Down to null depth
n = 10, its weight space decomposition has the form:

(2.25)
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Al wo w1 wo w3 wq ws

n=20 1

n=1 2 1

n=2 5 2

n=3 10 5 1

n=4 20 10 2 1

n=>5 36 20 5 2

n==6 65 36 10 5

n=7 110 65 20 10 1

n=2=8 185 110 36 20 2

n=29 360 185 65 36 5 1

n=10 481 360 110 65 10 2
where

wo = (1, 0, O)

w1 =(-1,11),(0, -1,2), (2, -2,1), @3, -1, -1

wy =(—-2,0,3),(1,-3,3),(4,0,-3)
ws=(-3,2,2),(-1,-2,4),(3,2,-4), (5 -2,-2)
wa=(-4,1,4),(-3,-1,5), (5 -5,1), (0,5, —-4), (2,4, -5), (6, -1, —4)
ws = (=5,3,3), (-2, -3,6), (4, -6, 3), (7, =3, —3)

and the vertical strings contain the weight multiplicities, given in [29].
The Z3 grading [1 1, 1] of (2.15) can be read

(A2)o = {(m; 0,0,0), k}
(A1 = {(m; —1,2, —1), (m; —1, -1, 2), (m: 2, —1, —1)} (2.27)
(A2)z = {(m; 1, -2, 1), (m; 1,1, =2), (m; =2, 1, 1)}.

To find the corresponding grading ®f(A), one can choose the highest weighi 1, 0, 0)
to belong toVp, and act iteratively on this weight with the elements of various grading
subspaces (2.27). From (1.2), one finds, for all the weights down=tdl0,

V=1{(1,0,0),(-20,3), (1,3, -3), (4,0, -3), (-5,3,3), (2,6, —3), (7, =3, —3),

4,3,-6), ...}
Vi=1{(0,2 -1, (3 —1, 1), (-3,22), (3,2 —4), (—3,5, 1), (0, 5, —4),

6, -1, —4),..) (2.28)
Vo={(-1,1,1), (21 —2), (-1 4 —2), (-4, 1,4), (5, -2, —2), (2, 4, —5),

5,1, -5),...}

plus all the permutations of the last two componehisand A, of each weight (e.g.
(4,-3,0) € Vp). The null depthn is omitted in the weight because the grading does
not depend on it. The grading has been chosen so that the wéight0) belongs toVj.

The straightforward way to obtain (2.28) is by using (1.2) and applying all the elements
of the different grading subspacey (@nd g, from (2.27)) onVy so as to find a subset of
each grading subspace ®f(A). Proceeding iteratively, we then apply the same elements
(through (1.2)) on the identified elements of tig found in the first step, to find further

elements ofV,,. The grading (2.28) lies in the direction of tpeincipal slicing [29] of the
weight system.
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For the grading [01, 0] of (2.16") we have

(A2)o = {(m; 0,0,0), (m; +1, +1, F2), k}
(A2)1 = {((m; 1,2, 1), (m; 2,1, 1)} (2.29)
(A2)z = {(m; 1, =2, 1), (m; 2, =1, =1)}.

By proceeding as for (2.28), we find the decomposition:

VWw=1{(1,0,0),(0,-1,2), 2,1, -2),(-1,-2,4), 3,2, -4),(-4,4,1),
(—3,5, 1), (5 -5,1), (6, -4, 1), (-5, 3,3), (-2, —3,6), (—2, 6, —3),
(4,3,-6),(4,-6,3),(7,—-3,-3), ...}

Vi=1{(-1,11),(0,2, -1),(-20,3),(1,3,-3), 4 -3,0), (3, -4, 2, (2.30)
5,-2,-2),(-3,-1,5),(2,4,-5), (2, -5,4), (6, -1, —4), ...}

Vo={(2,-2,1),(3,-1,-1),(-2,3,0),(-3,2,2), (1, -3,3), (-1, 4, —-2),
(4,0,-3),(—4,1,4),(0,—-4,5), (0,5, —-4), (5,1, -5), ...}.

Again, the grading is independent of the null depth.
From (2.19), we see that a general vertiéal grading has the form

(A2)o = {(Nm, @)}

(A1 = {(Nm+ 1, &)}
(2.31)

(A = (Nm + k, a)}

wherem € Z, and« is any root ofA,. Now the grading depends on the null depth only.
The corresponding grading &f(A) is

Vi = {(k, o)} k=0,...,N—1(modN) for all «. (2.32)

3. Graded contractions

In section 1, | have defined the graded contractions of any Lie algebra and its representations.
In section 2, | have described the horizontal and vertical gradings, and, more particularly,
the toroidal gradings of affine Lie algebras and their irreducible representations. These
are the basic elements needed to contract an algebra and its representations. It is now
straightforward to obtain the graded contractions of affine Lie algebras, which form a new
class of infinite-dimensional Lie algebras. To summarize the contraction of algebras: one
gets an horizontal grading (2.8) by using the expression (2.2) to find the eigenspaces of the
EFO, or a vertical grading by using (2.11) and8® To find the graded contractions, one

just replaces the solutions of (1.5) in the modified commutation relations (1.3). The grading
of representations has been described and illustrated in section 2.4.

The purpose of this section %ot to display huge lists of contractions, but rather to
describe their general properties. There exists a computer program [24] that provides the
solutions of equations (1.5) and (1.6), given the grading giowgnd the structure of the
grading (i.e. generic or non-generic). Each solution then provides a contraction of the
algebra or the representation.
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The most straightforward definition of graded contractions of an affine Lie algebra is
(after (1.3)) to deform the commutator (2.1) as

[a@t", bt =€, [a®@t™,bR1"]
=¢gula, b] ® 4 euvmkB(a, b)d,1n,0 (3.2)

wherea ® ™ € g,,b ® t" € g,, a vertical or horizontal grading. (As discussed below,

an interesting alternative is to deform simultaneously the Killing faBnj32], so that it
becomes possible to preserve the central extension whereas the first term in (3.1) is put to
zero.)

3.1. Comparison with lorili—-Wigner contractions

First, we compare the tmi—Wigner contraction of a Kac—Moody algebra (studied in [16])
with the particular case of &, graded contraction. We write the basis of the alggbes

T:, where a =1,...,dimg andm € Z, and the commutation relations

(T4, TN =iforTs,, + 5km8“" 8, . (3.2)
Then, we decomposg following Indni—Wigner, by writing the underlying vector space
asg = go+ g1, wherego = {T%}, ¢ = 1,2,...,r, forms a subalgebra of, and
g1={T},i =r+1r+2...,dmg is its complementary subspace. The commutation

relations (3.2) must take the form
(T3, TP = i f P T + 5km8* 8,100

(7o, T =i/ T

(3.3)

[T T = 1 f3 Ty + Skm8" 8yrin 0
in order to define an nu—Wigner contraction. The contraction is then defined by
multiplying all the basis elements of the vector subspgcdy a contraction parameter
& so that, in the limite — 0, the commutators in the third row of (3.3) vanish. Thus, the
resulting algebra admits A, grading, wherejo = {T, k} andg; = {T}. Therefore, one
can say that the mi—Wigner contraction of an affine algebra is a particular casef a
graded contraction, withgo = 1 = g1 ande; 1 = 0. Obviously, there are other graded
contractions which lead to an@ni—Wigner contraction.

As mentioned in [25] for the particular case df;, the contractions of an algebra
g include semidirect sums of the initigl with an infinite-dimensional Abelian ideal, or
‘translation’ algebra. In other words, among the possible contractiorgs ofe finds the
algebrag > a, wherea is an infinite-dimensional Abelian ideal of the contracted algebra.
This may be surprising because it is specific to the infinite-dimensional Lie algebras, and
cannot occur in the finite cases. This occurs witkegtical grading, where, from (2.8),
go = (@®C[t,t o) ® Ck ~ §. If &, = 1 for all u, and all the other parameters
vanish, then the subalgebgais preserved, and so are the commutators which involve this
subalgebra and the remaining basis elements. Since all the remaining commutators vanish,
the corresponding ideal is Abelian.

In fact, the graded contractions allow one to go much further than this. Whenever
€00 = 1, the subalgebra (i.e. the initial algebra) will be contained in the contracted algebra,
either in direct or semidirect sums. | will illustrate this wi#h contractions. In addition to
the contraction mentioned previously, there are two other non-trivial contractions, namely
one wheresgo = 1, 601 = 0 = ¢1.1, and the other wittegg = 0 = 01, 611 = 1. For the
first, only the subalgebrg is preserved, so that the contracted algebi is g ® a, where
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a is Abelian (and, obviously, infinite). Under this contraction the vector space undetlying
no longer carries a representation space of the subal@ehrthe adjoint representation. In
the second case, the only commutation relations that are not deformed to zefio, 8i¢ [
Therefore, the subspagg becomes Abelian, and the commutation relations involving any
of its elements also vanish.

We note also that the centre is modified under a contraction, as in the finite case.
Whereas the centre of an affine algebra consists only of its central extension, it usually
becomes bigger after a contraction. For instance, in the Zigstontraction displayed in
the previous paragraph the centre also includes all the elements of the supspbtéhe
secondZ, contraction, the centre includes the elements of the subalggl{i. the initial
algebra). Depending on the particular grading that is preserved, and depending on the initial
algebra, there might be additional elements in the centre.

3.2. Generators of positive root vectors

Another interesting property that is modified under a contraction is the minimal set of
generators of positive root vectors. In general, the greater the number of contracted
commutators (i.e. zero after contraction), the greater is the set of such generators. Below,
| illustrate this point by discussing in detail some examples wdithand A,.

The set of positive root vectors of; is given by E poo+qes,» Wherep andqg are positive
integers such that1 < p — ¢ < 1. The gradings ofi; are easy to visualize if we write
these vectors as

E(X]_ E(X1+5 EO(1+2§ EOI1+35 E(X1+45
E;s E>s E3s Eqs
E 415 E_ o425 E_y 435 E_y a5

Now | will show explicitly how to obtain the generators for all ti# contractions.

(This was done in [25] but | obtain them here in a more systematic way, which is easier to
generalize to other algebras and gradings.)

For thehorizontal grading,go = {E..s, k; m > 1} are the elements of the second row,
andgy = {Ey, Eqyms, E_oyms; m > 1} corresponds to the first and third rows. To find the
generators of positive root vectors for the contractige = 1 = &g 1, €11 = 0, we consider
each element of the array, one at the time, and see if it can be obtained by commutation of
previous generators, by taking into account the contraction parameters. It is convenient to
start from the left, and from the bottom to the top, so the two elements that we keep first are
E,, andE_,, ;5. The next two elementds and E,, 5, can be obtained by the commutator
of the first two, so we do not need them as generators. The next (and the last) one to be
retained isE_,,+s, which cannot be obtained from any commutator of the other elements.
Therefore, the set of positive roots of the graded contractions is generated by three vectors:
Eals Efot1+8: and E,a1+25.

By a similar reasoning, we find that the generators corresponding to the contraction
€00 = 1, €01 = 0= €11 are

Eo,  Eur@t1s, E—ait2s,  E@+ns,  E—aiv@r+1s k>0.
For the contractiorzgo = 0 = 91 andey 1 = 1, the generators are

Eo, Egt+1s, Eotns, E—ar@+1)s k> 0.
The vertical grading, for whichgo = {Ea,, Eay+2ms> E2mss E—ayvoms, k; m > 1} and
01 = {Eoi+@n-15> E@m-1)5s E—ayr@m-1s; m > 1} consists of the elements of the odd
columns forgg, and the even columns fgy;. For this grading (which is non-generic,
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* £0,1
becausedp, go] = 0), we have two contractior€ ) together with their respective

€01 €11

generators of positive root vectors:

(i jd) with generatorsE,,, Ew+1)s, E—ay+s
* 0 .
( 0 1) with generatorsE,, ks, E_g 4 k+1)s k> 0.

| now illustrate this with the algebra,, and itsZ, gradings (2.14) and (2.17). As
before, it is convenient to display the positive root vectorsigfin an array:

Ea1+a2 Ea1+a2+5 Ea1+a2+28 Ea1+a2+38 Ea1+a2+4¢3

Eaz Ea2+6 Ea2+28 Evt2+38 Eaz+46

Eal Ea1+6 Ea1+28 Eot1+38 Ea1+48
Es E2s Es3s Eyss
E—a1+8 E—tx1+26 E—a1+35 E—ot1+4§
E 4,15 E_u,+2 E 4,43 E_u,+a5

E*(a1+w2)+5 E*(Ot1+042)+25 E*(a1+0t2)+35 E*(l’l1+a2)+45

The horizontal grading provided by the EFO [Q, 1] (see (214)) consists in the top,
middle and bottom rows fogig, and the four remaining rows fdgy. It is a generic grading
for which the generators are

Eals Eotzv E011+az’ E—(a1+a2)+6
. £00 €01 11
for the contractio = )
£01 11 10
Esiv Eopy Eoitars E_@itan+s Earrkss  Eaprkss  E—aiikss  E—aptks k>1

1 0
for the contractior( ) and
0 0

Eo, Eu E_(gita+s, Eartkss  Eaptis E—aitis,  E—aptks k=21

0 0

for the contractio
0 1

The vertical Z, grading (2.17) has the elements @f given by the odd columns, and
the elements ofj; given by the even columns. It is another generic grading for which the
generators are

Eals EO{z’ E*(Ot1+vt2)+87 E(Sv EZS? E*(Ot1+012)+28
. 1 1
for the contracnor( )
1 0
Eo, Euy E_wta+2ss Ent@u-1s k=21
where A represents all the roots (including the zero rootyofor the contractior( )

0 O
and Ex, s, (kK > 1), for the contractior( )
0 1
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3.3. Contractions involving a deformation of the bilinear form

As mentioned at the beginning of this section, one can define the contracted commutators
by allowing the invariant bilinear fornB to be contracted as well [32]. Given an horizontal
grading, witha € g, andb < g,, the commutator (3.1) is then modified to

[a@t", b 1t"]. = e,.[a,b] @ 1" + &, v VuvmkB(a, b)dyino (3.4)

where B is replaced byB” = y B. This permits the preservation of the second term on
the right-hand side, even ¥ = 0, by choosingy such thatye is constant. From [32],
BY (g, 8v) = vu.vB(g,, 9v), Wherey must satisfy [32]

E/L,vy/t-&-v.a == Sv,ny/t.v+a yu.v = yv,//.- (35)

To illustrate this, consider th&, contraction: oo = 1,601 = 0 = e11. The
corresponding solutions of (3.5) for are yo1 = 0, andyo0. y1.1 free. One can choose
y1.1 to approach infinity ag, 1 approaches zero, such that;yi11 = K, a constant. The
commutators of the contracted algebra then become

[(a [ tm)o, b® l‘n)o]a = [a, b] 024 e =+ )/o,oka(a, b)5m+n,0
[(a®t™), (bR1t")1]. =0 (3.6)

[((l ® ZJn)l’ (b ® tn)l]s = Kka(a, b)amﬂ-n,o'

As mentioned at the very beginning of this paper, the oscillator algebra can be obtained
through the trivialZ, contractionego = €01 = €11 = 0 (for which the three parameters
y are free) withyp; = 0 = y11 and yp o approaching infinity asg o approaches zero, so
that 0000 = K. The central term above is then preserved. Actually, when performed
this way the oscillator algebra is a subalgebra of the initial affine algebra. To get the true
oscillator algebra, one just takes the trivial gradfsg= g, §1 = 0, which shows that even
this important algebra is a rather trivial graded contraction.

4. Conclusion and outlook

A natural continuation of this work consists of applying the previous results in theoretical
physics. In general, any physical system or theory which is a limit of another system
may have its Lie algebra related to the algebra of the initial system by some contraction
procedure. This point might serve to identify potential contractions of affine Lie algebras
(e.g. in conformal field theory). Much work remains to be done on the mathematical
applications of the present paper. For instance, we have not considered the contractions of
twisted affine algebras, although the graded contractions can be used in this context.

Let me finish by mentioning an interesting aspect of the contraction of affine Lie algebras
which | plan to consider in more detail in the near future: the behaviour, under contractions,
of the extendedaffine algebrg® = g < U, where®J is the Virasoro algebra associated with
g. From the structure of the semidirect sum, we can see that, giventigal Zy grading
(2.8), theZy grading ofg® is

88 = (g0 ® C[r, 1)) ® Ck ® CLomodn
ﬁ_;zéozgj®(c[t’t_1]®(CijodN j=1...,N—-1

On the other hand, in the case of an horizontal grading, the Virasoro algeisraontained
completely in the grading subspag§:
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It would be very interesting to study the representations2bfobtained through
the Sugawara construction, and see if the conclusions above are compatible with this
construction. The basis elemerits of U are defined by

dimg
Li=3Y > (a®t ™) (e ®"") : Bla;., a;)
meZ i,j=1

where B(-, ) is the Killing form of g, which is just the Kronecker symbol in the bases
usually utilized in the Sugawara construction. However, because a general gragding of
not always associated with such a basis, we must keep it explicitly in the sum.

Next one would have to examine each step of this construction, by taking into account
the contraction parameters introduced both in the commutation relations (1.3), the action on
the representation (1.4) and the bilinear form (see [32]). Each term in the sum then takes
the form

G]//(: gy :)Vp = Eu,ku+v,pyu,va(: Iufv :)Vp-

The detailed investigation of this construction is beyond the scope of the present paper. |
plan to study the contraction of Sugawara (studied with the traditional method in [19]), and
related constructions (GKO, Virasoro) soon.

In relation to the construction of WZW models, there are strong indications that the
family of solvable Lie algebras introduced in [34] can be obtained through a graded
contraction, although they cannot be obtained from @nilirWigner contraction. For
instance, aZ3; graded structure is inherent in these algebras. However, for the algebras
As,(m > 3), the number of possible algebras to be contracted (which have the correct
dimension) is huge, and there is no systematical way to identify them yet. This study is
postponed to a future work.
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